skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Riebe, Clifford"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 9, 2026
  2. null (Ed.)
    Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering. 
    more » « less
  3. Abstract. Long-term environmental research networks are one approach toadvancing local, regional, and global environmental science and education. Aremarkable number and wide variety of environmental research networks operatearound the world today. These are diverse in funding, infrastructure,motivating questions, scientific strengths, and the sciences that birthed andmaintain the networks. Some networks have individual sites that wereselected because they had produced invaluable long-term data, while othernetworks have new sites selected to span ecological gradients. However, alllong-term environmental networks share two challenges. Networks must keeppace with scientific advances and interact with both the scientific communityand society at large. If networks fall short of successfully addressing thesechallenges, they risk becoming irrelevant. The objective of this paper is toassert that the biogeosciences offer environmental research networks a numberof opportunities to expand scientific impact and public engagement. Weexplore some of these opportunities with four networks: the InternationalLong-Term Ecological Research Network programs (ILTERs), critical zoneobservatories (CZOs), Earth and ecological observatory networks (EONs),and the FLUXNET program of eddy flux sites. While these networks were foundedand expanded by interdisciplinary scientists, the preponderance of expertise andfunding has gravitated activities of ILTERs and EONs toward ecology andbiology, CZOs toward the Earth sciences and geology, and FLUXNET towardecophysiology and micrometeorology. Our point is not to homogenize networks,nor to diminish disciplinary science. Rather, we argue that by more fullyincorporating the integration of biology and geology in long-termenvironmental research networks, scientists can better leverage networkassets, keep pace with the ever-changing science of the environment, andengage with larger scientific and public audiences. 
    more » « less